
Lab Setup Atomic Red Team & Bluespawn
EDR

Part 1: Install Atomic Red Team

Objective: Install and Configure the Atomic Red Team library of scripted attacks and the

PowerShell Execution framework to simplify the execution of atomic tests.

Lab VMs Needed: Windows PowerShell

Instructions:

An “Execution Framework” is a tool to aid in the execution of atomic tests, making it so we

don’t have to copy and paste commands into the specified executors (e.g. PowerShell or

cmd.exe).

Remember that the Atomic Red Team project itself is just a library of commands used to run

specific cyber-attacks. You can run these commands manually or use an “Execution

Framework” to automate the execution.

There are a variety of execution frameworks that can be used to read the Atomic Red Team

library of scripted attacks and execute them. The names of some of these frameworks are

listed below:

Invoke-AtomicRedTeam: Cross-Platform PowerShell Execution Framework 1

Prelude Operator: Cross-Platform, multi-language Command and Control (server/client)

style Execution Framework (free community edition)

CALDERA: Similar to Prelude Operator, Develop by the MITRE organization

Atomic Operator: Cross-Platform Python Execution Framework

The PowerShell Execution Framework works cross-platform when PowerShell core is

installed on macOS and Linux. For more details do check out below wiki :

https://github.com/redcanaryco/invoke-atomicredteam/wiki

The Wiki is full of helpful information about how to install, configure and use Atomic Red

Team and the execution framework.

https://github.com/redcanaryco/invoke-atomicredteam
https://www.preludesecurity.com/?www.prelude.org//Query
https://github.com/mitre/caldera
https://github.com/swimlane/atomic-operator
https://github.com/redcanaryco/invoke-atomicredteam/wiki

Click on the "Installation" link on the right

Please read through the installation instructions on the Wiki. You will notice there are three

installation options. The first installs only the execution framework, without the atomic test

definitions (the library of attacks). This is helpful if we are in an environment where we don’t

want to download the entire atomics folder full of simulated malware. We may wish to avoid

this to avoid setting off alerts or have many files automatically removed/quarantined. In

such

a scenario, we may want to hand pick only the atomics we are going to run and copy only

those

over to the system.

The second installation option will install both the Execution Framework and the “atomics”

folder full of the atomic test definitions and supporting files. This is the installation option

we

want to use for the labs in this class.

The third installation option simply downloads the library of scripted attacks without the

execution framework.

Follow the instructions in the “Install Execution Framework and Atomics Folder” section of

the Wiki. The installation commands should be run from a PowerShell prompt. You can start

the PowerShell prompt by double clicking on the shortcut on the desktop.

https://github.com/redcanaryco/invoke-atomicredteam/wiki/#install-execution-framework-and-atomics-folder

Paste the commands from the Wiki (also shown below) into the PowerShell prompt. You

might

need to hit “Enter” after pasting the commands.

You will be prompted to import the NuGet provider to which you should answer “Y”. If you

have run this command before, you will need to add the “-Force” parameter to force the

overwriting of the previous installation

IEX (IWR "https://raw.githubusercontent.com/redcanaryco/invoke-atomicredteam/maste

Install-AtomicRedTeam -getAtomics

You may receive an error during the installation as shown above. Notice that the last red line

is telling us that the installation failed? The reason it failed is because there was a

PowerShell

Execution policy in place preventing the running of scripts. If this occurs during your install,

you will need to bypass this “safety feature” in order to use the execution framework. For

simplicity in these labs, we will just bypass the execution policy completely for the current

user

with the following command.

There are options for just temporarily bypassing the execution policy, but we don’t cover

those

here.

Bypassing the execution policy outside of the lab environment may not be as

straightforward

as in your own environment. If you run into problems, check out one of these methods is

likely

to work. Method 12 is especially promising.

Now that we have installed the execution framework and the “atomics folder” containing the

test definitions and simulated malware we may start seeing Windows Defender showing

disapproval.

If we review the Virus and Threat Protection settings for Windows Defender, we can see

some

needed files are being blocked, quarantined and/or deleted. In our lab environment, we are

Set-ExecutionPolicy Bypass -Scope CurrentUser

https://www.netspi.com/blog/technical/network-penetration-testing/15-ways-to-bypass-the-powershell-execution-policy/

going to exclude the atomics folder from being scanned by Windows Defender so that we

can

run all of the atomic tests without being blocked. This allows us to confirm that we can

detect

the attack even if preventative controls are bypassed. Remember, “Prevention is ideal, but

detection is a must” an allowing emulation of each attack will help us prove out both.

On the start menu search for “Virus and threat Protection” and launch.

If prompted about “Sample submission” click “Don’t send”.

Under “Virus & threat protection settings” click “Manage settings”

Add an exclusion for the C:\AtomicRedTeam folder under the “Exclusions” section.

An alternative way to quickly add this exclusion from the PowerShell command line is given

below for convenience but must be run from an administrative PowerShell prompt.

Now, run the installation command one more time (from the non-administrative PowerShell

prompt) to re-download all the atomic files that may have been blocked or removed by

Windows Defender during the initial install.

Occasionally, Windows Defender decides to block the install at this point. If this happens,

you

need to completely disable Windows Defender for the installation.

To make sure everything was installed correctly, let’s run the “Get-Module” PowerShell

command. You should see the two items highlighted in red. They may not be positioned

together.

You can also validate that you have the “atomics” and “invoke-atomicredteam” folders in the

default installation folder of C:\AtomicRedTeam.

Add-MpPreference -ExclusionPath C:\AtomicRedTeam\

IEX (IWR "https://raw.githubusercontent.com/redcanaryco/invoke-atomicredteam/maste

Install-AtomicRedTeam -getAtomics -Force

We purposefully gave instructions to let you run into the common hurdles encountered

during

the installation. We could expedite the installation in the future by ensuring we bypass the

execution policy and by adding the C:\AtomicRedTeam folder to the Windows Defender

exceptions list before the installation attempt.

Atomic Red Team and the Execution Framework are now installed and ready for use. To

make

sure the Execution Framework is always loaded you should configure your profile to

automatically import this module as described in the next lab “Import the Atomic Red Team

Module”.

End of Part 1

Part 2: Import Atomic Red Team Module

Objective: Ensure that the PowerShell Execution Framework modules are loaded and

available

for use.

Lab VMs Needed: Windows PowerShell.

Instructions:

In the previous lab, we installed the Execution Framework. One step taken by the installer

was

to import the Atomic Red Team module so that its functions are available for use. If you are

still using the same PowerShell window where you installed Atomic Red Team, the needed

modules will already be imported. For example, you could make a call to the Invoke-

AtomicTest function without receiving an error message as shown below

We don’t want to run a test right now, so press Ctrl+C to cancel the command. Now close

the

PowerShell window and open a new PowerShell window. From this new window, type in

“Invoke-AtomicTest” again. Now PowerShell is complaining that it doesn’t recognize the

command

The Invoke-AtomicTest function is not recognized because the new PowerShell

session/window does not have the Atomic Red Team modules loaded. If you want to run the

modules you must import them into PowerShell again.

Run the following command to import the module again

Now the Invoke-AtomicTest command is available for use again.

Press Ctrl+C to return to the PowerShell prompt.

If you are going to be using the execution framework across multiple PowerShell sessions it

could get annoying to have to do the import each time. To make sure that the execution

framework is always available for use, even after starting a new PowerShell session, we can

add the import command to our PowerShell profile. Type the following in the PowerShell

command prompt to edit your profile.

Import-Module "C:\AtomicRedTeam\invoke-atomicredteam\Invoke-AtomicRedTeam.psd1" -F

Notepad should open and ask if you want to create a new file. Click "Yes"

In the Notepad file, add the Import-Module statement and save the file.

With the import statement in place in our profile, we can close and restart our PowerShell

window and the execution framework modules will already be imported and available for

use.

Now we are ready to use the framework to simplify the execution of the atomic tests from

the

Atomic Red Team library of scripted attacks.

End of Part 2

Part 3: List Atomic Tests

Objective: Use the execution framework to list the atomic tests available for execution,

along

with details of the commands, prerequisites and clean up.

Lab VMs Needed: Windows PowerShell.

Instructions:

Before we run any Atomic tests, let’s use the execution framework to find out what tests are

available for execution. Type the following into the PowerShell prompt.

notepad $profile

Import-Module "C:\AtomicRedTeam\invoke-atomicredteam\Invoke-AtomicRedTeam.psd1" -F

With the “ShowDetailsBrief” flag, you can see the MITRE Technique number (aka T#) and

the atomic test name.

Now let’s take a look at the specific details of each test. We can do this by changing the

“ShowDetailsBrief” flag to simply “ShowDetails”.

A bunch of information just scrolled across the screen, probably more than you could take

in.

Let’s get just the details for one of the tests. Look at the previous output (ShowDetailsBrief)

and choose one of the tests to view. We will choose to look at test number 1 (Gsecdump).

We

can use the “TestNumbers” flag to specify test number 1.

Invoke-AtomicTest T1003 -ShowDetailsBrief

Invoke-AtomicTest T1003 -ShowDetails

Invoke-AtomicTest T1003 -TestNumbers 1 -ShowDetails

These details contain the information about the test. In addition to describing the test, you

can

see that the Executor for this test is “command_prompt” meaning it should be run from the

command prompt (cmd.exe) and that it must be run with elevated privileges

(ElevationRequired: True).

Notice that there is a “Command:” section and a “Command (with inputs):” section. The

“Command (with inputs)” shows the command with all of the input arguments filled in. For

example, the red #{gsecdump_exe} argument has been replaced with the path to the

gsecdump.exe file.

We can also specify tests by name instead of number with the “TestNames” flag.

You can also provide multiple test numbers or names as a comma separated list as shown in

the example below.

Curious what other tests are available for execution on the current OS? Try listing them all

by

using “All” in the place of the technique number.

Invoke-AtomicTest T1003 -TestNames "Gsecdump" -ShowDetails

Invoke-AtomicTest T1003 -TestNumbers 1,2 -ShowDetails

Invoke-AtomicTest All -ShowDetailsBrief

Wow, there are a lot of tests in there. Note that only tests that apply to the current

operating

system (Windows in this case) will be listed. It also does not list tests that include manual

steps.

This is why you might see some missing test numbers, like T1003.001-5 in the image above.

End of Part 3

Part 4: Check or Get Prerequisites

Objective: Use the execution framework to check if your system meets the prerequisites for

executing an atomic test. If dependencies aren’t met, use the framework to download,

install,

or otherwise meet the prerequisites.

Lab VMs Needed: Windows PowerShell.

Instructions:

Some Atomic Tests have dependencies on certain applications being installed or files being

present. The dependencies or “prerequisites” must be satisfied in order to successfully run

the

atomic test. Let’s look at a test under Technique T1485 - Data Destruction that has a

pre �requisite.

Invoke-AtomicTest T1485 -ShowDetailsBrief

We will run the first test which securely deletes a file using the Sysinternals SDelete tool. If

we try to run this test right off, we will get an error that “sdelete.exe” is not recognized as

an

operable program. This is because SDelete does not come installed on a default Windows

OS.

If we take a look at the markdown file that describes this test, we see that there is a

prerequisite

that the “Secure delete tool from Sysinternals must exist on disk at specified location”.

We can use the “CheckPrereqs” flag to check if we meet the prerequisites before running

the

test.

Invoke-AtomicTest T1485 -TestNumbers 1 -CheckPrereqs

https://github.com/redcanaryco/atomic-red-team/blob/master/atomics/T1485/T1485.md

We see that we failed to meet the prerequisite. We can then use the “GetPrereqs” flag to

satisfy

this dependency.

The output indicates that the prerequisites have been successfully met. We can now

successfully execute this test.

Each atomic test specifies whether elevation is required in order to run the atomic test

successfully. If a test requires admin privileges and you run the “CheckPrereq” from an

unelevated context, the execution framework will report that you failed to meet the

prerequisites

because “Elevation was required but not provided”.

Invoke-AtomicTest T1485 -TestNumbers 1 -GetPrereqs

Invoke-AtomicTest T1485 -TestNumbers 1

To run an atomic test with elevated privileges, you will need to start PowerShell with the

“Run

as administrator” option. To do this, right click on the PowerShell icon and then click on Run

as administrator.

You will need to click “Yes” at the prompt to run as administrator.

Now that we know how to check and satisfy any dependencies for the atomic tests we want

to

execute, we are ready to execute tests!

End of Part 4

Part 5: Execute Atomic Tests

Objective: Use the execution framework to execute atomic tests.

Lab VMs Needed: Windows PowerShell.

Instructions:

There are two methods that can be used to execute atomic tests using the PowerShell

execution

framework: local and remote. In the “local” method, the framework executes the atomic

tests

on the same machine that the framework is installed on. Whereas with the “remote” method,

the execution framework is installed on one machine, and it is used to execute atomic tests

on

a remote machine. You can read more about executing atomic tests remotely on the Wiki

here.

In this lab, we will be using local execution to execute atomic tests on the same machine

that

the execution framework is installed on.

We actually gave you a sneak peek at executing a test in the previous lab, but we will show

some additional examples here. We can execute multiple tests by name or by number using

a

comma separated list.

Here we ran tests 2 and 3 of T1218.010. We could have specified these two tests by name

instead of number as shown below.

The output shows an error while running test #2 with an “Access is denied” message. This

could happen if the test requires execution from an elevated prompt and we didn’t provide

it.

However, in this case, this error is a result of Windows Defender blocking this attack

technique.

You might notice the popup message from Windows Defender in the corner stating that it

blocked something malicious.

Test #3, Regsvr32 local DLL execution, ran successfully because we see the calculator

application popup as noted in the description for this test.

Invoke-AtomicTest T1218.010 -TestNumbers 2,3

Invoke-AtomicTest T1218.010 -TestNames "Regsvr32 remote COM scriptlet

execution", "Regsvr32 local DLL execution"

https://github.com/redcanaryco/invoke-atomicredteam/wiki/Execute-Atomic-Tests-(Remote)
https://github.com/redcanaryco/atomic-red-team/blob/master/atomics/T1218.010/T1218.010.md#atomic-tests

Executing each test individually might be time consuming. If you want to run all tests within

a

specific T#, you can just specify the T#.

Above, all of the tests in the T1218.010 technique ran with a single command.

Notice that when we run any test, the first line output on the screen is the

“PathToAtomicsFolder”.

The default installation location for both the execution framework and the atomics folder is

“C:\AtomicRedTeam” on Windows or “~/AtomicRedTeam” on Linux\macOS. When the

execution framework runs, it assumes that the atomic test definition YAML files are inside

T#

folders at the default location of “C:\AtomicRedTeam\atomics”.

If you want to run atomics from another location, you need to tell the execution framework

where to find the atomic test definition YAML files by using the “PathToAtomicsFolder” flag

as shown below.

This would allow you to run your own custom/private atomics from a different folder

If you don’t want to specify your custom path to the atomics folder for every test execution,

you can add the following to your PowerShell profile.

Invoke-AtomicTest T1218.010

Invoke-AtomicTest T1218.010 -PathToAtomicsFolder C:\my-private-atomics

Each atomic test has a unique identifier called the GUID. You won’t see the GUID in the

“ShowDetailsBrief” output, but you will find it in the “ShowDetails” output.

You can execute tests by specifying a GUID instead of a test name/number as follows.

You might be asking yourself “Why in the world would I do that?”. While the GUID is not an

easy thing to type on the fly, it comes in handy when writing scripts to automate the

execution

of multiple tests to ensure that the script always runs the same test. The test numbers and

names

change sometimes. The test number is simply an indication of the order the atomic test

definition shows up in the YAML file and this can change as tests are added and removed. In

addition, the test name can change as developers decide to make the name more

descriptive or

fix typos.

Now a word on test execution timeout. The execution framework starts a hidden command

window to execute each test but redirects its output to the window you ran the “Invoke-

AtomicTest” command from. If the execution takes longer than two minutes by default, the

process and its children will be terminated. You can specify an alternate timeout period with

the “TimeoutSeconds” flag.

$PSDefaultParameterValues = @{"Invoke-AtomicTest:PathToAtomicsFolder"="C:\my-priva

Invoke-AtomicTest T1218.010 -TestGuids 449aa403-6aba-47ce-8a37-

247d21ef0306

Invoke-AtomicTest T1218.010 -TestNumbers 1 -TimeoutSeconds 15

Note: Not all processes that are spawned during a test will be terminated after the timeout

depending on how they are launched.

There is another flag called “-Interactive” that comes in handy when the commands being

executed result in a prompt for the user give input. For example, some commands may

prompt

the user to determine if they want to overwrite an existing file. If you don’t use the

Interactive

flag, you won’t see the prompt and the command will timeout. The reason why “-Interactive”

is not the default is because you can’t redirect command output to a file when executing

with

this flag. Details on redirecting everything you see on the screen after running a test to a

file

for logging purposes can be found here.

Another option you can use to execute all atomic tests is the “Invoke-AtomicTest All”

command, but this is not recommended. The interaction of all the tests running at once can

leave your system in an undesirable state.

By default, the details of which atomics were run are logged to the temp directory in a file

called “Invoke-AtomicTest-ExecutionLog.csv”. You can view this file with the following

command.

However, you may prefer to view this csv log file in Excel. The Excel

application is not included on the lab machine, so you won’t be able to open this view from

there.

If you would like to specify a different path for your log file, you can do that with the

“ExecutionLogPath” flag.

Import-CSV $env:TEMP\Invoke-AtomicTest-ExecutionLog.csv | Out-GridView

https://github.com/redcanaryco/invoke-atomicredteam/wiki/Execution-Logging#redirect-output-from-test-execution-to-a-file

Or, to set the execution log path permanently for all executions, you could add the following

line to your PowerShell profile.

This covers all the basic options for executing an atomic test. In the following labs, we will

learn how to specify custom input arguments and clean up after test execution.

End of Part 5

Part 6: Specify Custom Input Arguments

Objective: Specify custom input arguments during atomic test execution.

Lab VMs Needed: Windows PowerShell

Instructions:

To learn about input arguments, we will take a closer look at one of the tests under

technique

number T1016.

Notice that there is no test number 3. If you look at the details of test number 3 using the

following link, you will see that it does not include Windows as one of the supported

platforms.

https://github.com/redcanaryco/atomic-red-

team/blob/master/atomics/T1016/T1016.md#atomic-tests

Invoke-AtomicTest T1218.010 -ExecutionLogPath 'C:\Users\cookies\log.csv'

$PSDefaultParameterValues = @{"Invoke-AtomicTest:ExecutionLogPath"="C:\Users\cooki

Invoke-AtomicTest T1016 -ShowDetailsBrief

https://github.com/redcanaryco/atomic-red-team/blob/master/atomics/T1016/T1016.md#atomic-tests
https://github.com/redcanaryco/atomic-red-team/blob/master/atomics/T1016/T1016.md#atomic-tests

The supported platforms for test #3 are Linux and macOS. Since we are using the execution

framework on a Windows machine, these tests don’t apply and are not listed.

We continue on by looking at the information for test number 5.

Notice that this test has 3 input arguments (aka inputs). The names of the input arguments

are

“output_file”, “portfile_url” and “port_file”. Look at the table and you can see the default

value for each of these arguments.

Let’s use the PowerShell Execution Framework to look at the details for test #5.

Scroll to the “Command” section.

Invoke-AtomicTest T1016 -TestNumbers 5 -ShowDetails

There are two versions of the commands listed, one with the input arguments substituted in

and

one without. See the “Command” vs “Command (with inputs)” sections. The area outlined in

red in the “Command” section is the input argument, the default value for this input

argument

is also outlined in red in “Command (with inputs)” section. The same is true for the input

argument outlined in blue.

Let’s run the test and view the output. Because we aren’t specifying any input arguments,

the

default values will be used.

The output_file (c:\Users\cookies\Desktop\open-ports.txt) should have shown up on your

desktop.

Invoke-AtomicTest T1016 -TestNumbers 5

If we want to be prompted to enter our own values for the input arguments, use the

“PromptForInputArgs” flag.

Here we are prompted to enter a value for each of the three input arguments as shown in

red.

The default value for the input argument is shown inside the square brackets and can be

accepted by just pressing Enter or Return. In this example we set one custom value for the

output_file argument as shown in green.

Now when we execute the test it will write the open ports to a file on the Desktop called

“MyEgress.txt”

Being prompted interactively to enter values for input arguments is handy for interactive

execution but there is also another way to specify input arguments which is especially

useful

when using a non-interactive script to execute the test.

For this example, we will create a new ports.txt file with only a few ports in the list. The

three

commands below will add 80, 443 and 25 to a file called ports2scan.txt

You can use the “cat” command to print the contents of your new ports2scan.txt file as

shown

below.

Invoke-AtomicTest T1016 -TestNumbers 5 -PromptForInputArgs

$env:USERPROFILE\Desktop\MyEgress.txt

Add-Content $env:USERPROFILE\ports2scan.txt 80

Add-Content $env:USERPROFILE\ports2scan.txt 443

Add-Content $env:USERPROFILE\ports2scan.txt 25

cat $env:USERPROFILE\ports2scan.txt

We will use a variable called “myargs” to store our custom arguments which we will then

pass

to the Invoke-AtomicTest call.

We specified two of the three input arguments to use our own custom values instead of

their

default value.

With the $myArgs variable, we specified a port_file of:

C:\Users\cookies\port2scan.txt

And an output_file of:

C:\Users\cookies\Desktop\3ports.txt

This caused the test to check egress on 3 ports (80, 443, and 25) and to write its output to

“3ports.txt” on the Desktop. This was all done without being interactively prompted for the

input argument values.

This completes the custom input arguments lab. In the next lab we will be learning how to

run

$myargs = @{output_file = "$env:USERPROFILE\Desktop\3ports.txt";

port_file = "$env:USERPROFILE\ports2scan.txt"}

Invoke-AtomicTest T1016 -TestNumbers 5 -InputArgs $myargs

the cleanup commands in order to do some post-execution clean up.

End of Part 6

Part 7: Cleanup

Objective: Run the cleanup commands after executing an atomic test to reset the system

and

prepare it for executing the test again.

Lab VMs Needed: Windows PowerShell.

Instructions:

Some atomic tests create files that may contain sensitive information or otherwise clutter up

the file system. Other tests may change settings to insecure values or stop services. It is

often

desirable to delete the files created during atomic test execution or otherwise reset the

system

to normal operating parameters. Many of the atomic tests include “cleanup_commands”

which

do exactly that and we can use the execution framework to run these commands.

Let’s run through a full example of checking and satisfying prereqs, executing a test, and

finally

cleaning up. For this we will use the “Dump LSASS.exe Memory using direct system calls

and

API unhooking” test from T1003.001. First, check the prerequisites.

As can be seen, in order to run the test to dump the LSASS.exe memory, we need to satisfy

two prerequisites. The first can be satisfied by running PowerShell as an administrator. The

second prerequisite specifies that the “Dumpert” executable must be found at the specified

location. In order to obtain the Dumpert executable, we can run the test with the

“GetPrereqs”

flag, as we did in previous labs.

Invoke-AtomicTest T1003.001 -TestNumbers 3 -CheckPrereqs

We have now satisfied the second prerequisite, but it still complains that elevation is

required.

To solve this, we just need to start PowerShell as an administrator. Right click on the

“powershell” shortcut on the desktop and click “Run as administrator”.

Let’s check prerequisites again.

Now that the prerequisites have been met, we can run the test.

You see that the lsass dump file was created in the location indicated -

 C:\Windows\Temp\dumpert.dmp

Invoke-AtomicTest T1003.001 -TestNumbers 3 -GetPrereqs

Sometimes after running Atomic tests there are artifacts that are left over that are sensitive

in

nature. This is one of those examples. We don’t want to leave the dump file laying around.

After you have finished the test, you can run the cleanup command to make sure the lsass

dump

is not left on disk. We can check the details for the test to see what the cleanup command

will

do.

The cleanup command simply deletes the dumpert.dmp file, without out printing out any

errors

if it doesn’t exist.

In order to clean up after the test, we invoke the test with the “Cleanup” flag.

Look at the location where the file was saved to make sure it has been removed.

This completes the lab on executing cleanup commands. You have now learned how to use

the

Invoke-AtomicTest T1003.001 -TestNumbers 3 -Cleanup

ls C:\Windows\Temp

execution framework to execute atomic tests, including setup, cleanup, and custom inputs.

End of Part 7

Part 8: Bluespawn EDR

Bluespawn as a stand-in for an EDR system. Normally full EDRs like Cylance and

Crowdstrike are very expensive and tend not to show up in classes like this. However, the

folks at University of Virginia have done an outstanding job with BlueSpawn.

BlueSpawn will monitor the system for "weird" behavior and note it when it occurs. We will

be starting BlueSpawn and then running Atomic Red Team to trigger a lot of alerts.

Before we begin, you can download BLUESPAWN from the link provided below. Please keep

in mind the architecture of your operating system before downloading it.

https://github.com/ION28/BLUESPAWN/releases

First, let’s disable Defender. Simply run the following from an Administrator PowerShell

prompt:

 Set-MpPreference -DisableRealtimeMonitoring $true

Let's get started by opening a Terminal as Administrator:

.\BLUESPAWN-client-x64.exe --hunt -a Intensive --log=console

https://github.com/ION28/BLUESPAWN/releases

Now, let’s use Atomic Red Team to test the monitoring with BlueSpawn, we need to invoke

all the Atomic Tests.

Special note… Don't do this in production… Ever. Always run tools like Atomic Red Team on

test systems. We recommend that you run in on a system with your EDR/Endpoint protection

in non-blocking/alerting mode. This is so you can see what the protection would have done,

but it will allow the tests to finish.

You should be getting a lot of alerts with Bluespawn :

Invoke-AtomicTest T1055

OR

Invoke-AtomicTest All

Now, let’s go back to the PowerShell prompt and clean up:

End of Part 8

Invoke-AtomicTest All -Cleanup

