Lab Setup Atomic Red Team & Bluespawn
EDR

LABS

LAB SETUP ATOMIC
RED TEAM &

BLUESPAWN EDR"

Part 1: Install Atomic Red Team

Objective: Install and Configure the Atomic Red Team library of scripted attacks and the

PowerShell Execution framework to simplify the execution of atomic tests.
Lab VMs Needed: Windows PowerShell
Instructions:

An “Execution Framework” is a tool to aid in the execution of atomic tests, making it so we
don’t have to copy and paste commands into the specified executors (e.g. PowerShell or
cmd.exe).

Remember that the Atomic Red Team project itself is just a library of commands used to run
specific cyber-attacks. You can run these commands manually or use an “Execution

Framework” to automate the execution.

Execution
Atomic Red Team Framework

Library of Scripted Tool to read the library
Attacks and execute according
to specifications.

There are a variety of execution frameworks that can be used to read the Atomic Red Team
library of scripted attacks and execute them. The names of some of these frameworks are

listed below:

e Invoke-AtomicRedTeam: Cross-Platform PowerShell Execution Framework 1

e Prelude Operator: Cross-Platform, multi-language Command and Control (server/client)

style Execution Framework (free community edition)
o CALDERA: Similar to Prelude Operator, Develop by the MITRE organization

o Atomic Operator: Cross-Platform Python Execution Framework

The PowerShell Execution Framework works cross-platform when PowerShell core is

installed on macOS and Linux. For more details do check out below wiki :

e https://github.com/redcanaryco/invoke-atomicredteam/wiki

H redcanaryco / invoke-atomicredteam ' Public £ Noti

<> Code () Issues 12 Il Pull requests 1 () Actions [Projects | OO Wiki | & Security |~ Insights

Home

Carrie Roberts edited this page on Apr 26, 2022 - 22 revisions

Invoke-AtomicRedTeam is a PowerShell module to execute tests as defined in the atomics folder of Red Canary's Atomic Red
Team project. The "atomics folder” contains a folder for each Technique defined in the MITRE ATT&CK™ Framework. Inside of
each of these "T#" folders you'll find a yaml file that defines the attack procedures for each atomic test as well as an easier to
read markdown (md) version of the same data.

e Executing atomic tests may leave your system in an undesirable state. You are responsible for understanding what a test
does before executing.

* Ensure you have permission to test before you begin.

® [tis recommended to set up a test machine for atomic test execution that is similar to the build in your environment. Be
sure you have your collection/EDR solution in place, and that the endpoint is checking in and active.

The Wiki is full of helpful information about how to install, configure and use Atomic Red

Team and the execution framework.

https://github.com/redcanaryco/invoke-atomicredteam
https://www.preludesecurity.com/?www.prelude.org//Query
https://github.com/mitre/caldera
https://github.com/swimlane/atomic-operator
https://github.com/redcanaryco/invoke-atomicredteam/wiki

Click on the "Installation" link on the right

[=] redcanaryco / invoke-atomicredteam ' Public L) Notifications % Fork 158 ¥¢ Star 569 -

<> Code (%) Issues 12 1 Pullrequests 1 () Actions [Projects [0 wiki) Security |~ Insights

Home

Carrie Roberts edited this page on Apr 26, 2022 - 22 revisions

Invoke-AtomicRedTeam is a PowerShell module to execute tests as defined in the atomics folder of Red Canary’s Atomic Red » Pages)
Team project. The "atomics folder” contains a folder for each Technique defined in the MITRE ATT&CK™ Framework. Inside of
each of these “T#" folders you'll find a yaml file that defines the attack procedures for each atomic test as well as an easier to

read markdown {md) version of the same data.

* Import the Module

s Executing atomic tests may leave your system in an undesirable state. You are respensible for understanding what a test + List Atomic Tests

does before executing. « Check/Get Prerequisites for Atomic Tests

* Execute Atomic Tests (Local)

* Ensure you have permission to test before you begin. * Execute Atomic Tests (Remote)
+ Specify Custom Input Arguments

a Itic rarmamraandad ta cot iin 3 tact machina fAr atamic tact avas tian that ic cimilar +4 tha hoild in vAnre anviranrant Ba & Flozmon sftar Buarding Abamic Tacte

Please read through the installation instructions on the Wiki. You will notice there are three
installation options. The first installs only the execution framework, without the atomic test
definitions (the library of attacks). This is helpful if we are in an environment where we don't
want to download the entire atomics folder full of simulated malware. We may wish to avoid
this to avoid setting off alerts or have many files automatically removed/quarantined. In
such

a scenario, we may want to hand pick only the atomics we are going to run and copy only
those

over to the system.

The second installation option will install both the Execution Framework and the “atomics”
folder full of the atomic test definitions and supporting files. This is the installation option
we

want to use for the labs in this class.

The third installation option simply downloads the library of scripted attacks without the

execution framework.

Follow the instructions in the “Install Execution Framework and Atomics Folder” section of
the Wiki. The installation commands should be run from a PowerShell prompt. You can start
the PowerShell prompt by double clicking on the shortcut on the desktop.

https://github.com/redcanaryco/invoke-atomicredteam/wiki/#install-execution-framework-and-atomics-folder

Paste the commands from the Wiki (also shown below) into the PowerShell prompt. You
might

need to hit “Enter” after pasting the commands.

IEX (IWR "https://raw.githubusercontent.com/redcanaryco/invoke-atomicredteam/maste

Install-AtomicRedTeam -getAtomics

EX Windows PowerShell - O X

S C:\AtomicRedTeam> IEX (IWR
):

PS C:\AtomicRedTeam> Install-AtomicRedTeam

You will be prompted to import the NuGet provider to which you should answer “Y”. If you
have run this command before, you will need to add the “-Force” parameter to force the

overwriting of the previous installation

EN Windows PowerShell - O hs

You may receive an error during the installation as shown above. Notice that the last red line
is telling us that the installation failed? The reason it failed is because there was a
PowerShell

Execution policy in place preventing the running of scripts. If this occurs during your install,
you will need to bypass this “safety feature” in order to use the execution framework. For
simplicity in these labs, we will just bypass the execution policy completely for the current
user

with the following command.

Set-ExecutionPolicy Bypass -Scope CurrentUser

There are options for just temporarily bypassing the execution policy, but we don’t cover
those

here.

cutionPolicy Bypass CurrentUser

Bypassing the execution policy outside of the lab environment may not be as
straightforward

as in your own environment. If you run into problems, check out one of these methods is
likely

to work. Method 12 is especially promising.

Now that we have installed the execution framework and the “atomics folder” containing the
test definitions and simulated malware we may start seeing Windows Defender showing

disapproval.

W Virus & threat protection

Review files that Windows Defender will
send to Microsoft

Send files

If we review the Virus and Threat Protection settings for Windows Defender, we can see
some

needed files are being blocked, quarantined and/or deleted. In our lab environment, we are

https://www.netspi.com/blog/technical/network-penetration-testing/15-ways-to-bypass-the-powershell-execution-policy/

going to exclude the atomics folder from being scanned by Windows Defender so that we
can

run all of the atomic tests without being blocked. This allows us to confirm that we can
detect

the attack even if preventative controls are bypassed. Remember, “Prevention is ideal, but
detection is a must” an allowing emulation of each attack will help us prove out both.

On the start menu search for “Virus and threat Protection” and launch.
If prompted about “Sample submission” click “Don’t send”.
Under “Virus & threat protection settings” click “Manage settings”

% Virus & threat protection settings

Tamper protection is off. Your device may be vulnerable.

Turn on

Manage settings

Dismiss

Add an exclusion for the C:\AtomicRedTeam folder under the “Exclusions” section.

Exclusions

Microsoft Defender Antivirus won't scan items that you've excluded.
Excluded items could contain threats that make your device vulnerable.

|Add or remove exclusions |

Exclusions

Add or remove items that you want to exclude from Microsoft Defender
Antivirus scans.

+ Add an exclusion

ChAtomicRedTeam
Folder

An alternative way to quickly add this exclusion from the PowerShell command line is given
below for convenience but must be run from an administrative PowerShell prompt.

Add-MpPreference -ExclusionPath C:\AtomicRedTeam\

Now, run the installation command one more time (from the non-administrative PowerShell
prompt) to re-download all the atomic files that may have been blocked or removed by

Windows Defender during the initial install.

IEX (IWR "https://raw.githubusercontent.com/redcanaryco/invoke-atomicredteam/maste

Install-AtomicRedTeam -getAtomics -Force

EX Windows PowerShell - O b

PS C:%AtomicRedTeam> IEX (IWR

:\AtomicRedTeam> Ins
Installation of Inw = plete. You can now use the Ir e-AtomicTest function
< Wiki at htt thub.c canary invoke-atomicredteam/wiki for mplete details
PS C:%AtomicRedTea

Occasionally, Windows Defender decides to block the install at this point. If this happens,
you
need to completely disable Windows Defender for the installation.

To make sure everything was installed correctly, let’s run the “Get-Module” PowerShell
command. You should see the two items highlighted in red. They may not be positioned

together.
PS C:\AtomicRedTeam> ls

Directory: C:\AtomicRedTeam

Length MName

atomics
invoke-atomicredteam

You can also validate that you have the “atomics” and “invoke-atomicredteam” folders in the

default installation folder of C:\AtomicRedTeam.

| = | AtomicRedTeam

Home Share View

~ v A » ThisPC » Local Disk (C:) » AtomicRedTeam » v D

~

Marne Date modified Type Size

#F Quick access
[Desktop
* Downloads
Documents
&=/ Pictures

atomics 4:03 AM File folder

4
invoke-atomicredteam 4 4:01 AM File folder

% % % W

@ OneDrive
[This PC

[_} Metwork

We purposefully gave instructions to let you run into the common hurdles encountered
during

the installation. We could expedite the installation in the future by ensuring we bypass the
execution policy and by adding the C:\AtomicRedTeam folder to the Windows Defender
exceptions list before the installation attempt.

Atomic Red Team and the Execution Framework are now installed and ready for use. To
make

sure the Execution Framework is always loaded you should configure your profile to
automatically import this module as described in the next lab “Import the Atomic Red Team
Module”.

End of Part 1

Part 2: Import Atomic Red Team Module

Objective: Ensure that the PowerShell Execution Framework modules are loaded and
available
for use.

Lab VMs Needed: Windows PowerShell.
Instructions:

In the previous lab, we installed the Execution Framework. One step taken by the installer
was

to import the Atomic Red Team module so that its functions are available for use. If you are
still using the same PowerShell window where you installed Atomic Red Team, the needed
modules will already be imported. For example, you could make a call to the Invoke-
AtomicTest function without receiving an error message as shown below

cmdlet I ! icTest at command pipeline position 1
Supply wval r the following parameters:

micTechniquel[@]:
\AtomicRedTeams> o

We don’t want to run a test right now, so press Ctrl+C to cancel the command. Now close
the

PowerShell window and open a new PowerShell window. From this new window, type in
“Invoke-AtomicTest” again. Now PowerShell is complaining that it doesn’t recognize the

command

tomicTest

The Invoke-AtomicTest function is not recognized because the new PowerShell
session/window does not have the Atomic Red Team modules loaded. If you want to run the
modules you must import them into PowerShell again.

Run the following command to import the module again

Import-Module "C:\AtomicRedTeam\invoke-atomicredteam\Invoke-AtomicRedTeam.psdl" -F

Now the Invoke-AtomicTest command is available for use again.

-AtomicTest

micTest at command pipeline position 1
the following parameters:

Press Ctrl+C to return to the PowerShell prompt.

If you are going to be using the execution framework across multiple PowerShell sessions it
could get annoying to have to do the import each time. To make sure that the execution
framework is always available for use, even after starting a new PowerShell session, we can
add the import command to our PowerShell profile. Type the following in the PowerShell

command prompt to edit your profile.

notepad $profile

ookies> notepad

Notepad should open and ask if you want to create a new file. Click "Yes"

Motepad *

Cannot find the
! Ch\Users\cookies\Documents\WindowsPowerShell\Microsoft.P
owerShell_profile ps1 file,

Do you want to create a new file?

Yes Mo Cancel

In the Notepad file, add the Import-Module statement and save the file.

Import-Module "C:\AtomicRedTeam\invoke-atomicredteam\Invoke-AtomicRedTeam.psdl" -F

m_?l Microsoft.PowerShell_profile - MNotepad

File Edit Format View Help
Import-Module "C:‘\AtomicRedTeam‘invoke-atomicredteam\Invoke-AtomicRedTeam.psdl"” -Force

With the import statement in place in our profile, we can close and restart our PowerShell
window and the execution framework modules will already be imported and available for

use.

Now we are ready to use the framework to simplify the execution of the atomic tests from
the

Atomic Red Team library of scripted attacks.

End of Part 2

Part 3: List Atomic Tests

Objective: Use the execution framework to list the atomic tests available for execution,
along

with details of the commands, prerequisites and clean up.
Lab VMs Needed: Windows PowerShell.
Instructions:

Before we run any Atomic tests, let’s use the execution framework to find out what tests are
available for execution. Type the following into the PowerShell prompt.

Invoke-AtomicTest T1003 -ShowDetailsBrief

With the “ShowDetailsBrief” flag, you can see the MITRE Technique number (aka T#) and
the atomic test name.

Now let’s take a look at the specific details of each test. We can do this by changing the
“ShowDetailsBrief” flag to simply “ShowDetails”.

Invoke-AtomicTest T1003 -ShowDetails

Sbinpath"

A bunch of information just scrolled across the screen, probably more than you could take
in.

Let’s get just the details for one of the tests. Look at the previous output (ShowDetailsBrief)
and choose one of the tests to view. We will choose to look at test number 1 (Gsecdump).
We

can use the “TestNumbers” flag to specify test number 1.

Invoke-AtomicTest T1003 -TestNumbers 1 -ShowDetails

These details contain the information about the test. In addition to describing the test, you
can

see that the Executor for this test is “command_prompt” meaning it should be run from the
command prompt (cmd.exe) and that it must be run with elevated privileges

(ElevationRequired: True).

Notice that there is a “Command:” section and a “Command (with inputs):” section. The
“Command (with inputs)” shows the command with all of the input arguments filled in. For
example, the red #{gsecdump_exe} argument has been replaced with the path to the
gsecdump.exe file.

a

We can also specify tests by name instead of number with the “TestNames” flag.

Invoke-AtomicTest T1003 -TestNames "Gsecdump" -ShowDetails

You can also provide multiple test numbers or names as a comma separated list as shown in

the example below.

Invoke-AtomicTest T1003 -TestNumbers 1,2 -ShowDetails

Curious what other tests are available for execution on the current OS? Try listing them all
by

using “All” in the place of the technique number.

Invoke-AtomicTest All -ShowDetailsBrief

=
-
:
:
:
:
-
:
:
:
:
-
:
:
:
:
-
:
:
:
:
-
:
:
I

Wow, there are a lot of tests in there. Note that only tests that apply to the current
operating

system (Windows in this case) will be listed. It also does not list tests that include manual
steps.

This is why you might see some missing test numbers, like T1003.001-5 in the image above.

End of Part 3

Part 4: Check or Get Prerequisites

Objective: Use the execution framework to check if your system meets the prerequisites for
executing an atomic test. If dependencies aren’t met, use the framework to download,
install,

or otherwise meet the prerequisites.
Lab VMs Needed: Windows PowerShell.
Instructions:

Some Atomic Tests have dependencies on certain applications being installed or files being
present. The dependencies or “prerequisites” must be satisfied in order to successfully run
the

atomic test. Let’s look at a test under Technique T1485 - Data Destruction that has a

prerequisite.

Invoke-AtomicTest T1485 -ShowDetailsBrief

We will run the first test which securely deletes a file using the Sysinternals SDelete tool. If
we try to run this test right off, we will get an error that “sdelete.exe” is not recognized as
an

operable program. This is because SDelete does not come installed on a default Windows
OsS.

included, wverify that the path is cor
s the name of a cmdlet, function, script

String) []1, CommandNotFoundException

If we take a look at the markdown file that describes this test, we see that there is a
prerequisite

that the “Secure delete tool from Sysinternals must exist on disk at specified location”.

Dependencies: Run with powershell !

Description| Secure delete tool from Sysinternals must exist on disk at specified Iocationl(#{sdelete_exe}}

Check Prereq Commands:

f (Test-Path #{sdelete_exe] exit @} else {exit

Get Prereq Commands:

Invoke-WebRequest "https://download.sysinternals.com/files/SDelete.zip” -OutFile "$env:TEMP\SDelete.zip"
Expand-Archive $env:TEMP\SDelete.zip $env:TEMP\Sdelete -Force

Remove-Item $env:TEMP\SDelete.zip -Force

We can use the “CheckPrereqs” flag to check if we meet the prerequisites before running
the
test.

Invoke-AtomicTest T1485 -TestNumbers 1 -CheckPreregs

https://github.com/redcanaryco/atomic-red-team/blob/master/atomics/T1485/T1485.md

We see that we failed to meet the prerequisite. We can then use the “GetPrereqs” flag to
satisfy
this dependency.

Invoke-AtomicTest T1485 -TestNumbers 1 -GetPreregs

The output indicates that the prerequisites have been successfully met. We can now

successfully execute this test.

Invoke-AtomicTest T1485 -TestNumbers 1

Each atomic test specifies whether elevation is required in order to run the atomic test
successfully. If a test requires admin privileges and you run the “CheckPrereq” from an
unelevated context, the execution framework will report that you failed to meet the
prerequisites

because “Elevation was required but not provided”.

CheckPrereq's for: 2 Cr n NPP

but not p
ailab emp directory

To run an atomic test with elevated privileges, you will need to start PowerShell with the
“Run

as administrator” option. To do this, right click on the PowerShell icon and then click on Run
as administrator.

Open
> Open file location
el | ©

Run as administrator I

Wikl B Share with Skype
Pin to Start

Ea Scan with Microsoft Defender...
Pin to taskbar

Restore previous versions

Send to o

You will need to click “Yes” at the prompt to run as administrator.

E Windows PowerShell

Verified publisher: Microsoft Windows

Show more details

Now that we know how to check and satisfy any dependencies for the atomic tests we want

to

execute, we are ready to execute tests!

End of Part 4

Part 5: Execute Atomic Tests

Objective: Use the execution framework to execute atomic tests.
Lab VMs Needed: Windows PowerShell.
Instructions:

There are two methods that can be used to execute atomic tests using the PowerShell

execution

framework: local and remote. In the “local” method, the framework executes the atomic
tests

on the same machine that the framework is installed on. Whereas with the “remote” method,
the execution framework is installed on one machine, and it is used to execute atomic tests
on

a remote machine. You can read more about executing atomic tests remotely on the Wiki
here.

In this lab, we will be using local execution to execute atomic tests on the same machine
that

the execution framework is installed on.

We actually gave you a sneak peek at executing a test in the previous lab, but we will show
some additional examples here. We can execute multiple tests by name or by number using
a

comma separated list.

Invoke-AtomicTest T1218.010 -TestNumbers 2,3

Here we ran tests 2 and 3 of T1218.010. We could have specified these two tests by name

instead of number as shown below.

Invoke-AtomicTest T1218.010 -TestNames "Regsvr32 remote COM scriptlet
execution”", "Regsvr32 local DLL execution"

The output shows an error while running test #2 with an “Access is denied” message. This
could happen if the test requires execution from an elevated prompt and we didn’t provide
it.

However, in this case, this error is a result of Windows Defender blocking this attack
technique.

You might notice the popup message from Windows Defender in the corner stating that it
blocked something malicious.

Test #3, Regsvr32 local DLL execution, ran successfully because we see the calculator
application popup as noted in the description for this test.

https://github.com/redcanaryco/invoke-atomicredteam/wiki/Execute-Atomic-Tests-(Remote)
https://github.com/redcanaryco/atomic-red-team/blob/master/atomics/T1218.010/T1218.010.md#atomic-tests

Executing each test individually might be time consuming. If you want to run all tests within
a
specific T#, you can just specify the T#.

Invoke-AtomicTest T1218.010

:\Users\cookies» Invoke-AtomicTest T1218.81@

Running Atomic Tests [l Calculator

___ [Calculator — O X
= Standard D

M+ M- ME &

o CE c @ .

Wy s 9T = e

Above, all of the tests in the T1218.010 technique ran with a single command.

Notice that when we run any test, the first line output on the screen is the
“PathToAtomicsFolder”.

iicRedTeam> In omicTest T12

lder \ edTeam\,

The default installation location for both the execution framework and the atomics folder is
“C:\AtomicRedTeam” on Windows or “~/AtomicRedTeam” on Linux\macOS. When the
execution framework runs, it assumes that the atomic test definition YAML files are inside
T#

folders at the default location of “C:\AtomicRedTeam\atomics”.

If you want to run atomics from another location, you need to tell the execution framework
where to find the atomic test definition YAML files by using the “PathToAtomicsFolder” flag

as shown below.

Invoke-AtomicTest T1218.010 -PathToAtomicsFolder C:\my-private-atomics

This would allow you to run your own custom/private atomics from a different folder

If you don’t want to specify your custom path to the atomics folder for every test execution,
you can add the following to your PowerShell profile.

SPSDefaultParameterValues = Q@{"Invoke-AtomicTest:PathToAtomicsFolder"="C:\my-prive

Each atomic test has a unique identifier called the GUID. You won’t see the GUID in the

“ShowDetailsBrief” output, but you will find it in the “ShowDetails” output.

You can execute tests by specifying a GUID instead of a test name/number as follows.

Invoke-AtomicTest T1218.010 -TestGuids 449aa403-6aba-47ce-8a37-
247d21ef0306

You might be asking yourself “Why in the world would | do that?”. While the GUID is not an
easy thing to type on the fly, it comes in handy when writing scripts to automate the
execution

of multiple tests to ensure that the script always runs the same test. The test numbers and
names

change sometimes. The test number is simply an indication of the order the atomic test
definition shows up in the YAML file and this can change as tests are added and removed. In
addition, the test name can change as developers decide to make the name more
descriptive or

fix typos.

Now a word on test execution timeout. The execution framework starts a hidden command
window to execute each test but redirects its output to the window you ran the “Invoke-
AtomicTest” command from. If the execution takes longer than two minutes by default, the
process and its children will be terminated. You can specify an alternate timeout period with

the “TimeoutSeconds” flag.

Invoke-AtomicTest T1218.010 -TestNumbers 1 -TimeoutSeconds 15

Note: Not all processes that are spawned during a test will be terminated after the timeout

depending on how they are launched.

There is another flag called “-Interactive” that comes in handy when the commands being

executed result in a prompt for the user give input. For example, some commands may

prompt

the user to determine if they want to overwrite an existing file. If you don’t use the

Interactive

flag, you won’t see the prompt and the command will timeout. The reason why “-Interactive”

is not the default is because you can’t redirect command output to a file when executing

with

this flag. Details on redirecting everything you see on the screen after running a test to a

file

for logging purposes can be found here.

Another option you can use to execute all atomic tests is the “Invoke-AtomicTest All”

command, but this is not recommended. The interaction of all the tests running at once can

leave your system in an undesirable state.

By default, the details of which atomics were run are logged to the temp directory in a file

called “Invoke-AtomicTest-ExecutionLog.csv”. You can view this file with the following

command.

Import-CSV $env:TEMP\Invoke-AtomicTest-ExecutionLog.csv |

However, you may prefer to view this csv log file in Excel. The Excel

Out-GridvView

application is not included on the lab machine, so you won’t be able to open this view from

there.

EX Import-CSV Senmv: TEMP\Invoke-AtomicTest-ExecutionLog.csv | Qut-GridView O s

Filter d @
Execution Time (UTC) | Execution Time (Local) | Technigue | Test Number | Test Name Hostname Username | GUID
2023-05-01T11:28:21Z 2023-05-01T19:28:21Z T1485 1 Windows - Overwrite file with Sysintemals SDelete cookies 476419
2023-05-01T11:28:322 2023-05-01T19:28:327 T1485 1 Windows - Overwrite file with Sysintemals SDelete cookies 476410k
2023-05-01T11:34:082 2023-05-01T19:34:082 T1485 1 Windows - Overwrite file with Sysintemals SDelete cookies 476419t
2023-05-01T11:41:382 2023-05-01T19:41:382 T1218.010 1 Regsvr32 remote COM scriptlet execution cookies ¢9d0cde
2023-05-01T11:41:402 2023-05-01T19:41:407 T1218.010 2 Regsvr32 local DLL execution cookies (08ffca73
2023-05-01T11:46:372 2023-05-01T19:46:372 T1218.010 1 Regsvr32 local COM scriptlet execution cookies 449a340
2023-05-01T11:46:372 2023-05-01T1946:372 T1218.010 2 Regsvr32 remote COM scriptlet execution cookies c9d0cde
2023-05-01T11:46:402 2023-05-01T1946:40Z T1218.010 3 Regsvr32 local DLL execution cookies 08ffca73
2023-05-01T11:46:452 2023-05-01T19:46:452 T1218.010 4 Regsvr32 Registering Non DLL cookies laeSeal
2023-05-01T12:04:497 2023-05-01T20:04:497 T1218.010 1 Regsvr32 local COM scriptlet execution cookies 4493340

If you would like to specify a different path for your log file, you can do that with the

“ExecutionLogPath” flag.

https://github.com/redcanaryco/invoke-atomicredteam/wiki/Execution-Logging#redirect-output-from-test-execution-to-a-file

Invoke-AtomicTest T1218.010 -ExecutionLogPath 'C:\Users\cookies\log.csv'

Or, to set the execution log path permanently for all executions, you could add the following
line to your PowerShell profile.

SPSDefaultParameterValues = @{"Invoke-AtomicTest:ExecutionLogPath"="C:\Users\cooki

This covers all the basic options for executing an atomic test. In the following labs, we will

learn how to specify custom input arguments and clean up after test execution.

End of Part 5

Part 6: Specify Custom Input Arguments

Objective: Specify custom input arguments during atomic test execution.
Lab VMs Needed: Windows PowerShell
Instructions:

To learn about input arguments, we will take a closer look at one of the tests under
technique
number T1016.

Invoke-AtomicTest T1016 -ShowDetailsBrief

YWcookieshlog.csv Out-GridvView

Notice that there is no test number 3. If you look at the details of test number 3 using the
following link, you will see that it does not include Windows as one of the supported

platforms.

e https://github.com/redcanaryco/atomic-red-
team/blob/master/atomics/T1016/T1016.md#atomic-tests

https://github.com/redcanaryco/atomic-red-team/blob/master/atomics/T1016/T1016.md#atomic-tests
https://github.com/redcanaryco/atomic-red-team/blob/master/atomics/T1016/T1016.md#atomic-tests

Atomic Test #3 - System Network Configuration Discovery

Identify network configuration information.

Upon successful execution, sh will spawn multiple commands and output will be via stdout.

|Supported Platforms: macOs, Linux |

auto_generated_guid: c141bbdb-7fca-4254-9fd6-f47e79447e17

Attack Commands: Run with sh!

if [-x "$(command -v arp)}”]; then arp -a; else echo "arp is missing from the machine. skipping..."; fi;

if [-x "$(command -v ifconfig)"]; then ifconfig; else echo "ifconfig is missing from the machine. skipping..."; fi;

if [-x "$(command -v ip)"]; then ip addr; else echo "ip is missing from the machine. skipping..."; fi;

if [-x "$(command -v netstat)"]; then netstat -ant | awk '{print $NF}' | grep -v '[a-z]" | sort | uniq -c; else echo "netstat is mi
« >

The supported platforms for test #3 are Linux and macQOS. Since we are using the execution
framework on a Windows machine, these tests don’t apply and are not listed.

We continue on by looking at the information for test number 5.

Atomic Test #5 - List Open Egress Ports

This is to test for what ports are open outbound. The technique used was taken from the following blog:
https:/fwww.blackhillsinfosec.com/poking-holes-in-the-firewall-egress-testing-with-allports-exposed/

Upon successful execution, powershell will read top-128.txt (ports) and contact each port to confirm if open or not. Qutput will be to
Desktop\open-ports.txt.

Supported Platforms: Windows

auto_generated_guid: 4b467538-f102-491d-ace7-ed487b853bt5

Inputs:
Name Description Type Default Value

output_file = Path of file to write port scan results path $env:USERPROFILE\Desktop\open-ports.txt
https://github.com/redcanaryco/atomic-red-

portfile_url URL to top-128.txt url ps//g / . ryco/
team,/raw/master/atomics/T1016/src/top-128.txt

The path to a text file containing ports te be
port_file scanned, one port per line. The default list uses the path PathToAtomicsFolder\T1016\src\top-128.txt

top 128 ports as defined by Nmap.

Notice that this test has 3 input arguments (aka inputs). The names of the input arguments

are

nou

“output_file”, “portfile_url” and “port_file”. Look at the table and you can see the default
value for each of these arguments.

Let’'s use the PowerShell Execution Framework to look at the details for test #5.

Invoke-AtomicTest T1016 -TestNumbers 5 -ShowDetails

Scroll to the “Command” section.

t, $null, %null)
lull

There are two versions of the commands listed, one with the input arguments substituted in
and

one without. See the “Command” vs “Command (with inputs)” sections. The area outlined in
red in the “Command” section is the input argument, the default value for this input
argument

is also outlined in red in “Command (with inputs)” section. The same is true for the input
argument outlined in blue.

Let’s run the test and view the output. Because we aren’t specifying any input arguments,
the

default values will be used.

Invoke-AtomicTest T1016 -TestNumbers 5

@ open-ports.tx

The output_file (c:\\Users\cookies\Desktop\open-ports.txt) should have shown up on your

desktop.

If we want to be prompted to enter our own values for the input arguments, use the
“PromptForinputArgs” flag.

Invoke-AtomicTest T1016 -TestNumbers 5 -PromptForInputArgs

Here we are prompted to enter a value for each of the three input arguments as shown in
red.

The default value for the input argument is shown inside the square brackets and can be
accepted by just pressing Enter or Return. In this example we set one custom value for the

output_file argument as shown in green.

Senv:USERPROFILE\Desktop\MyEgress.txt

d by Nmap. [PathToAtomicsFolder\TI

Now when we execute the test it will write the open ports to a file on the Desktop called
“MyEgress.txt”

Being prompted interactively to enter values for input arguments is handy for interactive
execution but there is also another way to specify input arguments which is especially
useful

when using a non-interactive script to execute the test.

For this example, we will create a new ports.txt file with only a few ports in the list. The
three
commands below will add 80, 443 and 25 to a file called ports2scan.txt

Add-Content $env:USERPROFILE\ports2scan.txt 80
Add-Content $env:USERPROFILE\ports2scan.txt 443
Add-Content $env:USERPROFILE\ports2scan.txt 25

You can use the “cat” command to print the contents of your new ports2scan.txt file as
shown

below.

cat $env:USERPROFILE\ports2scan.txt

We will use a variable called “myargs” to store our custom arguments which we will then
pass

to the Invoke-AtomicTest call.

$myargs = Q{output file = "S$env:USERPROFILE\Desktop\3ports.txt";
port file = "$env:USERPROFILE\ports2scan.txt"}

Invoke-AtomicTest T1016 -TestNumbers 5 -InputArgs Smyargs

; port_file Senv:USERPROFILE

j 3ports - Notepad
File Edit Format View Help

E@ closed -~
443 closed

88 open

443 open

25 closed

There were a total of 2 open ports out of 5 ports tested.

Ln1, Col1 100% Windows (CRLF) UTF-8

We specified two of the three input arguments to use our own custom values instead of
their
default value.

Dutpat_file

With the $myArgs variable, we specified a port_file of:
C:\Users\cookies\port2scan.txt

And an output_file of:
C:\Users\cookies\Desktop\3ports.txt

This caused the test to check egress on 3 ports (80, 443, and 25) and to write its output to
“3ports.txt” on the Desktop. This was all done without being interactively prompted for the

input argument values.

This completes the custom input arguments lab. In the next lab we will be learning how to

run

the cleanup commands in order to do some post-execution clean up.

End of Part 6

Part 7: Cleanup

Objective: Run the cleanup commands after executing an atomic test to reset the system
and
prepare it for executing the test again.

Lab VMs Needed: Windows PowerShell.
Instructions:

Some atomic tests create files that may contain sensitive information or otherwise clutter up
the file system. Other tests may change settings to insecure values or stop services. It is
often

desirable to delete the files created during atomic test execution or otherwise reset the
system

to normal operating parameters. Many of the atomic tests include “cleanup_commands”
which

do exactly that and we can use the execution framework to run these commands.

Let’s run through a full example of checking and satisfying prereqgs, executing a test, and
finally

cleaning up. For this we will use the “Dump LSASS.exe Memory using direct system calls
and

APl unhooking” test from T1003.001. First, check the prerequisites.

Invoke-AtomicTest T1003.001 -TestNumbers 3 -CheckPreregs

@83 .8081\bin\Outflank-Dumpert.

the -GetPr

As can be seen, in order to run the test to dump the LSASS.exe memory, we need to satisfy
two prerequisites. The first can be satisfied by running PowerShell as an administrator. The
second prerequisite specifies that the “Dumpert” executable must be found at the specified
location. In order to obtain the Dumpert executable, we can run the test with the
“GetPrereqgs”

flag, as we did in previous labs.

Invoke-AtomicTest T1003.001 -TestNumbers 3 -GetPreregs

.eel

m calls and API unt

We have now satisfied the second prerequisite, but it still complains that elevation is
required.
To solve this, we just need to start PowerShell as an administrator. Right click on the

“powershell” shortcut on the desktop and click “Run as administrator”.

Let’s check prerequisites again.

em calls and API unh

[1] Checking

16, build number 19843
[+]
[2] Checking
[+]
[+1 W Memo i 7FF82B74D4F@
[+] /
[+]
[3] Create
[+]
[+] . = y to: 3 d emphdumpert.dmp
[+] Dump s
ting t ump ry using di

You see that the Isass dump file was created in the location indicated -

C:\Windows\Temp\dumpert .dmp

€« A » ThisPC » Local Disk(C:) » Windows » Temp v O

Mame Date modified Type Size

3+ Quick access

I Deskt | | B8dBcb79-619b-4b21-a05e-Tebd12ed022... 4/30 TP File 3,914 KB

eskto f 1

P | L| dumpert.dmp 31/ DMP File 34,79 KB |

; Downloads =] MpCmdRun 312 Text Document 3 KE

=] Documents E MpsigStub 5/1/2 Text Document 78 KB

&= Pictures |=| msedge_installer 5/1/ Text Document 99 KB

& OneDri =] wrware-vmsve-SYSTEM 51/ Text Document 49 KB
neDrive

=] wvmware-vmtoolsd-cookies 4/30 Text Document 1KB

[This PC = vmware-vmtoolsd-SYSTEM 4/30 Text Document 1KE

B Network =] vmware-vmusr-cookies 31/ Text Document 46 KB

or
=] vmware-vmvss-SYSTEM 4/30 Text Document 1KB

Sometimes after running Atomic tests there are artifacts that are left over that are sensitive
in

nature. This is one of those examples. We don’t want to leave the dump file laying around.
After you have finished the test, you can run the cleanup command to make sure the Isass
dump

is not left on disk. We can check the details for the test to see what the cleanup command
will

do.

Cleanup Commands:

Command :

- C:\windows\te \dumpert.dmp

The cleanup command simply deletes the dumpert.dmp file, without out printing out any
errors

if it doesn’t exist.

In order to clean up after the test, we invoke the test with the “Cleanup” flag.

Invoke-AtomicTest T1003.001 -TestNumbers 3 -Cleanup

Look at the location where the file was saved to make sure it has been removed.

ls C:\Windows\Temp

This completes the lab on executing cleanup commands. You have now learned how to use
the

execution framework to execute atomic tests, including setup, cleanup, and custom inputs.

End of Part 7

Part 8: Bluespawn EDR

Bluespawn as a stand-in for an EDR system. Normally full EDRs like Cylance and
Crowdstrike are very expensive and tend not to show up in classes like this. However, the
folks at University of Virginia have done an outstanding job with BlueSpawn.

BlueSpawn will monitor the system for "weird" behavior and note it when it occurs. We will

be starting BlueSpawn and then running Atomic Red Team to trigger a lot of alerts.

Before we begin, you can download BLUESPAWN from the link provided below. Please keep
in mind the architecture of your operating system before downloading it.

e https://github.com/ION28/BLUESPAWN/releases

First, let’s disable Defender. Simply run the following from an Administrator PowerShell
prompt:

Set-MpPreference -DisableRealtimeMonitoring S$true

Let's get started by opening a Terminal as Administrator:
.\BLUESPAWN-client-x64.exe --hunt -a Intensive --log=console

PS5 C:\Us cokies\Downloads> .\BLUESPAWN-client-x64.exe Intensive

/3355555 /35 /3%

8% EE| %% | %

2%\ EE| %% | %

$355555 | % | %
| 8
| 8
[

/3% [5333535F /EEEEEE /EEREEEE /BEREEE /5% /3% /%% /%%
| 23| 3% {IBE__ $5__ $5 /85__ 33| 3% /% | $3| $3% | 3%
| 23| 3% | 88 /| 3% 35| 8% O\ %85| $3 /%5%| 35| 233%| 2%
| 83| $358% | 5355 3355555/ | $535555%| 35/3% 55 55| $3 3% 3%

$5_ %] 9% |

£% 0\ 5%| 9% |

ssasass/| ssasssssl ssasesy| s3333335| $58533/| 3 | s8] 5/ 38| 85\ 33

$5| $5__/ fo| B5__ $355_ $33%| %5 $33%
55| 3% /5% $35/ W 35| $5 335

$
$
$
$
$

[LOW] i a Hunt
a hunt

https://github.com/ION28/BLUESPAWN/releases

Now, let's use Atomic Red Team to test the monitoring with BlueSpawn, we need to invoke

all the Atomic Tests.

Special note... Don't do this in production... Ever. Always run tools like Atomic Red Team on

test systems. We recommend that you run in on a system with your EDR/Endpoint protection

in non-blocking/alerting mode. This is so you can see what the protection would have done,

but it will allow the tests to finish.

[nvoke-AtomicTest

OR

T1055

Invoke-AtomicTest All

You should be getting a lot of alerts with Bluespawn :

to
to
to
to

read
read
read
read
read

the
the
the
the
the
the

hunt
hunt
hunt
hunt
hunt
hunt
hunt
hunt
hunt
hunt

module
module
module
module
module
module

at:
at:
at:
at:

7ffalasepane
7ffadbb25e68
7ffoedactong

f+alad8daaa
7ffalaiaoaas
7fTadbb25688

ft-Windo

>] EX Administrator: Windows PowerShell - v

uting t

en], ArgumentExceptio

Dirite.d11
Invali
orld : Invoke!

211 a method on a null-val
St

d on a null-

5 Iny t) [1, RuntimeException
ifiedErrorld ¢ Invo

a method on a null-

Now, let’s go back to the PowerShell prompt and clean up:

Invoke-AtomicTest All -Cleanup

N Administrator: Windows PowerShell —

Running Atomic Tests
Progress:
[C0eoC0C0000000000000

ip
cleanup
anup
cleanup
p f
leanup
anup
cleanup
nup for
cleanup

End of Part 8

